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Abstract

The use of parameterized reduced order models(PROMs) within the stochastic reduced
order model (SROM) framework is a logical progression for both methods. In this report,
five different parameterized reduced order models are selected and critiqued against the other
models along with truth model for the example of the Brake-Reuss beam. The models are:
a Taylor series using finite difference, a proper orthogonal decomposition of the the output,
a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers
to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results
and constructs a polynomial curve to better represent the output data. The methods are
compared against a parameter sweep and a distribution propagation where the first four
statistical moments are used as a comparison. Each method produces very accurate results
with the Craig-Bampton reduction having the least accurate results. The models are also
compared based on time requirements for the evaluation of each model where the Meta-
Model requires the least amount of time for computation by a significant amount. Each of
the five models provided accurate results in a reasonable time frame. The determination of
which model to use is dependent on the availability of the high-fidelity model and how many
evaluations can be performed. Analysis of the output distribution is examined by using a
large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and
the stochastic reduced order model sampling technique. Both techniques produced accurate
results. The stochastic reduced order modeling technique produced less error when compared
to an exhaustive sampling for the majority of methods.
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Chapter 1

Introduction

Motivation

The implementation of high-fidelity models has recently become the engineering standard
in order to produce more accurate results. This increase in model fidelity has emphasized
the question of ”how accurately do the computational models represent reality?”. In order
to know this, the practice of uncertainty quantification (UQ) must be utilized and improved
in order to tell the accuracy of the high-fidelity models. Uncertainty quantification, however,
requires a statistical approach which typically includes distribution sampling that requires
multiple evaluations of the model [8]. This raises the problem of computation ability since
each high-fidelity model takes a large amount of computational power and man-hours to
evaluate.

One of the most efficient way to evaluate the model is to create a Reduced Order Model
(ROM) that captures the required information, such as natural frequency or mode shapes,
while eliminating the undesired information [5]. The most common method for creating
ROMs is to perform a domain shift into the frequency domain. This is utilized in the most
common ROM, the Craig-Bampton representation [14] which is discussed in a later section.

One major drawback to using these ROMs is that they do not give any information about
a system that has any perturbation in the model. This is usually the case for uncertain
material properties or machining tolerances. For each one of these model changes, a brand
new ROM must be created, which is very computationally expensive. The goal of this
research is to be able to use select information to create a ROM for any value of the model
changes.

The method used in this report for implementing the Stochastic Reduced Order Model
(SROM) is not the typical use of this technique. Typically, the SROM is used to determine
the input of the high-fidelity model. Once the input is determined, then a Taylor series with
a finite difference approach to determine sensitivities is used to create a mathematical model
instead of the high-fidelity model. With the mathematical model, a brute-force Monte-Carlo
sampling method is used to determine the output distribution. The material in this report
have a fixed input of the high-fidelity model and then uses the SROM technique to sample
the output distribution. This is done in order to show the efficacy of the technique compared
to a traditional Monte-Carlo sampling and to another reduced sampling technique, the Latin
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Hypercube sampling.

Stochastic Reduced Order Model and Parameterized

Reduced Order Model

This research uses two techniques in order to produce a ROM for any given model con-
figuration: SROM and Parameterized Reduced Order Model (PROM). SROM refers to the
technique used to optimally select the configurations that the high-fidelity model is evalu-
ated. The uncertain parameter of interest, material property or geometric property, has a
specified distribution which is assumed to be known. These high-fidelity calculations are the
basis for the generation of the ROM that is used in the determination of the output distribu-
tion. The exact procedure is not discussed in depth in this report but is discussed in [6, 7, 8].
Using the SROM technique, in general, uses an optimal subset of the sampling distribution
to best match the first several statistical moments of the distribution. The SROM is used to
create several ROMs at different configurations with different probabilities that are used to
estimate the output distribution of interest. This report discusses what should be done with
the information gathered from the high-fidelity calculations. The desired information that
is calculated from the models can be any type of information such as: Natural frequencies,
mode shapes, fatigue life, ultimate tensile strength, etc. The data used for the calculations
in this report are the natural frequencies. This is chosen for the relative simplicity of the
calculation which allow for truth data to be calculated in order to validate the methods being
compared.

While the previous step focuses on the high-fidelity model and what information is gath-
ered, the next step utilized the previous information to produce a PROM. This parame-
terization is based on the different configurations that the high-fidelity model took in the
previous step. The example utilized in this report has a variation in the material property,
the Young’s modulus. This is due to the simplicity of the model’s ability to change this
value. There are two types of parameterizations that are used in this report: Sensitivi-
ties and Polynomial fit. The Sensitivities refer to the expression of the output function’s
derivative to the input change. Multiple derivatives are calculated and utilized. Some of
the models will determine these sensitivities by using a finite-difference approach while other
calculate these analytically. These derivatives are then used in conjuncture with the Taylor
series expansion of the nominal output to get an approximation of the true output. The
polynomial fit refers to replacing the output function with a polynomial expression. The
coefficients are determined by using the nominal output from the high-fidelity calculations.

The paper is organized as follows: Chapter 2 gives an overview of the five different type
of PROMs used in this comparison including some of the requirements for the construction
each PROM. In Chapter 3, the example model that is used for these calculations is shown.
Chapter 4 shows the results for the case where the input variable is fairly well known and
has a small range of values it can take, while Chapter 5 gives the example where very little
information is actually known about the input variable which constitutes a large range of
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possibilities. Some conclusions and general remarks about each possible model are given in
Chapter 6.
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Chapter 2

Reduction Models

The choice of what type of reduction model to use is very important. Each method has
its own drawbacks and advantages. This research focuses on five different models. Some of
these models are physical while some are purely numerical. Each method is discussed along
with instructions for the computation so that these results can be replicated if desired. If
the data and functionals are desired, please contact the authors. The methods that are used
are: A Taylor series expansion using finite difference methods to determine sensitivities,
A Proper Orthogonal Decomposition of the data, Using a Craig-Bampton representation,
Implementing Hyper-Dual numbers in order to obtain the sensitivities, and using a Meta-
Model approach that fits a polynomial to the data.

Taylor Series

The first method is the most straight forward and the most commonly used in the SROM
technique. This method uses the output data and a finite difference approach to determine
the sensitives. The method for using the finite difference approach can be found in [12]. This
computes the sensitivities of different orders as a weighed sum of the functional output at
different parameter values. A second order first derivative for a scalar variable is seen as

f ′(Xo) =
f(Xo +∆)− f(Xo −∆)

2∆
, (2.1)

where f() is the output function f : R 7→ R, f ′() is the first derivative with respect to X,
Xo is the nominal input parameters, and ∆ is the change in the input parameters that the
function was evaluated at. This equation assumes that the high-fidelity model was evaluated
at at-least three different input parameter values, Xo−∆, Xo, and Xo+∆. The more data-
points that are available, the more accurate the sensitivities become along with the added
benefit that higher order derivatives can also be determined. This research used five data
points to generate the sensitivities which can produce up to the fourth derivative of the
functional. This model also assumes that the uncertain parameters are independent, which
is an important assumption to consider and verify. Otherwise, the finite difference approach
can only determine conditional derivatives.

Once the sensitivities are determined, they can be applied to a Taylor series expansion
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about the nominal value. This can be seen as

f(Xo + δ) = f(Xo) +
1

1!
f ′(Xo)δ +

1

2!
f ′′(Xo)δ

2 + · · ·+ 1

n!
f (n)(Xo)δ

n + · · · . (2.2)

In Eq. 2.2, δ refers to the difference from the nominal parameter value and the superscript
(n) is the nth derivative of the function, which is calculated by Eq. 2.1 for the first derivative.
This equation is an infinite series but is truncated at the highest order derivative available.

This method is very straight forward; it does not require any change in the high-fidelity
code and is accurate for small changes in the input parameters. One problem this method
has is that the accuracy is directly related to the amount of times the code is evaluated.
The accuracy is also decreased if the data-points that the sensitivities are derived at are
far apart. This is the most commonly used method of reduction since the analysis is very
simple, but can be time consuming since multiple code evaluations must be used.

Proper Orthogonal Decomposition

The next method is the proper orthogonal decomposition (POD). This method utilizes
basis vectors in order to reduce the computational time and storage requirements of prop-
agation. This method is very similar to the Taylor series method in that it uses a finite
difference approach to approximate the derivatives. The main difference comes in how the
uncertainty parameterization is performed. This method is explained in more detail in [4].
If the data, such as natural frequencies or mass matrix, is sorted into a matrix A, then that
matrix can be decomposed via a singular value decomposition. This decomposition takes the
form of A = UDV T where U and V are a collection of orthogonal basis vectors in the form
of matrices and D is a diagonal matrix that contain the principal values of the matrix A. It
is also noted that this is very similar to an eigenvalue decomposition but does not require A
to be a square, symmetric matrix.

The diagonal matrix D can be truncated basis on its values. This can give a reduced
order representation of the matrix A which will require less computational time to compute
and require less memory storage than the Taylor series method. The vectors U and V are
invariant with respect to the change in input parameters [13], so the only value that need
to be parameterized is the diagonal matrix D. This invariance comes from the definition of
U and V which are direction vectors to the singular value space. The derivatives of D are
found using the finite difference approach discussed in the Taylor series method.

This method is advantageous because the matrix D is diagonal and is smaller in size
than the raw data matrix A. The disadvantage is that the data matrix must be decomposed
which takes more overhead to compute since three matrices are being evaluated instead of
just one. This increase in overhead time must be compared to the savings in the propagation
step of UQ.
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Craig-Bampton

While the previous two methods were numerical based, the Craig-Bampton method is a
physical reduction model. This method takes the system matrices that are generated from
the model and reduces the size by introducing a hybrid coordinate system that contains both
physical interface degrees of freedom (DOF) and fixed-interface modal DOF. This method is
explained in [5]. This is useful because the modal DOF are by definition independent so they
can be truncated based on the frequency. It is common to choose a truncation frequency
based on twice the desired range of importance. For example, if the highest frequency of
interest is around 1kHz, then the fixed-interface modes that are kept are all the modes up
to 2kHz. This is a rule-of-thumb in order to get acceptably accurate results. The more
modes that are selected, the more accurate the solution, but that requires more DOF which
diminishes the reduction effect.

The first step is to determine the interface of interest. This is usually simple but the
size of the interface has a great affect on the reduction of the system since these interface
DOF will not be reduced. With this determined, the system matrices are partitioned into
interface and interior DOF. This is defined as

u =

[
ui

uo

]
, (2.3)

where u is the physical DOF vector, subscript i is the interior, and subscript o is the interface.
In order to transform into this hybrid coordinate system, a transformation matrix is defined
as

Tcb =

[
Φ Ψ
0 I

]
. (2.4)

In Eq. 2.4, Φ is the fixed interface mode shapes, which are mass-normalized, Ψ are the
shapes the interior takes due to a unit displacement in each interface DOF individually, 0 is
a matrix of zeros, and I is an identity matrix. The matrix Ψ can be computed by using the
static shapes which takes the form of Ψ = −K−1

ii Kio where K is the stiffness matrix.

This transformation matrix is applied to the system so that the system matrices are
reduced. The mass, stiffness and forcing vector are shown in Eq. 2.5 as

Mcb = T T
cbMTcb Kcb = T T

cbKTcb Fcb = T T
cbF, (2.5)

with M as the high-fidelity mass matrix and F is the external forcing vector. Once the
Craig-Bampton system matrices are generated, then any typical analysis can be done such
as eigenvalue analysis or time integration. It is noted that if all of the fixed-interface modes
are kept, then Eq. 2.5 does not change the size of the matrices and results in the exact
solution.
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This method is different from the rest of the methods in that it is a model based in
the physical domain. This also doesn’t require a full high-fidelity model code evaluation,
just the extraction of the system matrices are required. The sensitivities are computed
normally by finite difference, but if available, the derivatives can be computed using Hyper-
Dual numbers which will be explained in section of Hyper-Dual reduction. This is not the
same as the Hyper-Dual reduction but the underlying math can be used in both methods.
This method requires a calculation of the model every time. The other methods so far only
required a plug-into a formula but this method requires a full code evaluation which takes
longer to compute compared to the other methods but still less than the high-fidelity model.
This method is useful for a physical interpretation of the system and can be used in multiple
techniques such as sub-structuring.

Hyper-Dual Reduction

The previous models consisted purely in the real domain where the Hyper-Dual reduction
consists in the complex domain. The Hyper-Dual reduction uses a generalized complex
approach to the reduction. The use of these generalized complex numbers allows for a
determination of derivatives in a single code evaluation [9]. The generalized complex number
is called a Hyper-Dual number. This is a multi-dimensional expansion of the dual number.
This is similar to the use of quaternions for the ordinary imaginary number. The math
behind these Hyper-Dual numbers are explained in [1, 9, 10, 11], but a brief explanation is
also presented here.

The basis of the Hyper-Dual number is the dual number. The duel number, ϵ is similar
to an ordinary complex number but is defined as ϵ2 = 0. This is very useful since all of
the higher-order moments of ϵ are by definition zero, such as ϵ3. Hyper-Dual numbers take
this principal and expands it into the multi-dimensional domain. This report uses a eight
dimensional approach, which gives the third derivative of the function. The determination of
the derivatives come from the Taylor series expansion for a second derivative of the function
is given as

f(Xo+h1ϵ1ei+h2ϵ2ej+0ϵ1ϵ2) = f(Xo)+ϵ1h1
∂f(Xo)

∂xi

+ϵ2h2
∂f(Xo)

∂xj

+ϵ1ϵ2h1h2
∂2f(Xo)

∂xi∂xj

, (2.6)

in which ei is a zero vector with 1 in the ith position and xi is the i
th component of the input

vector of parameters Xo. The form in Eq. 2.6 is the same for the third derivative by the
addition of an ϵ3 term and all the subsequent cross-products. Equation 2.6 assumed that the
function is differentiable up to the second derivative. It is also noted that the cross-products
are independent of the order of multiplication such as ϵ1ϵ2 = ϵ2ϵ1 which is not the case for
quaternions.

The useful thing about the implementation of Hyper-Dual numbers is that if a class is
created, then the high-fidelity code does not have to change by very much. This is however
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one of the major drawbacks of using this method. The high-fidelity code must be able to
compute Hyper-Dual numbers. This requires some configured code to run with Hyper-Dual
numbers or a knowledge of how the code evaluates the model and programming knowledge.
SIERRA has already been implemented to utilize Hyper-Dual numbers on select versions.
Contact the authors if access to this version is desired. While the special programs required
to perform this method is required, there are several helpful aspects of this model. This
method only requires a single high-fidelity code evaluation which can significantly reduce
the time required in the analysis since the rest of the methods so far required multiple code
evaluations. Another benefit is that the derivatives are exact while the other methods only
give an approximation. The storage of this data can either be done as a single value with
unreal parts or as multiple real values.

Meta-Model

This method is the newest of the five methods. The method is currently being developed
jointly between Sandia and The University of Wisconsin-Madison. While no publications
have been written as of the time that this report is written, all credit is given to Dr. Dan
Kammer. The basic idea of this method is to fit a polynomial curve to the output data.
The main contribution of this method is the use of Hyper-Dual numbers for additional data.
This method combines the Taylor series and Hyper-Dual reduction methods. Multiple code
evaluations of the Hyper-Dual method are performed and a polynomial curve is fit to the
function values and the derivatives that are given by the Hyper-Dual code evaluations. The
exact polynomial equations vary based on the number of code evaluations and the number
of derivatives that are determined. The polynomial fit has the form of

f(X) = F0 + F1X + F2X
2 + · · ·+ FkX

k, (2.7)

where Fi is an unknown coefficient matrix and k is the maximum polynomial power. k is
determined by k = (n+1)m−1 where n is the number of derivatives calculated at each code
evaluation and m is the number of code evaluations. The coefficient matrices are determined
by matching the polynomial and the derivative of the polynomial to the code evaluation
results.

This method have several advantages to the other methods. This model is the quickest
to evaluate in the propagation part of the UQ. The reason for this is due to the fewer
multiplications required since it doesn’t require a factorial computation that the Taylor
series requires. This is also due to the fact that only a polynomial is evaluated which is
simple multiplication. This method was developed to take the best of the Taylor series
and Hyper-Dual methods. One disadvantage to this method is the determination of the
unknown coefficient matrices. This can become very difficult if the output data is large. The
polynomial coefficients are determined based on the simple equation AX = B where the
vector X is written as X = [Fo F1 · · · ]T , which are the unknown matrix coefficients, and B is
the output data from the code evaluations including function values and the derivatives. The
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matrix A is derived to equate the polynomial value and derivatives at each code evaluation.
For the example used in this report, the natural frequencies are used and the coefficient
matrices are fairly simple to calculate. The mode shapes was explored but the coefficient
matrices were unable to be determined. This was due to the large size.
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Chapter 3

Brake-Reuss Beam Example

In order to evaluate these methods, the example is chosen to be the Brake-Reuss beam.
This system is chosen due to the relative simplicity and the ability to complicate the system
[2, 3]. The material is assumed to be an uncertain temper of Aluminum. This uncertain
temper leads to uncertainty in the Young’s modulus. The physical beam is constructed by
two identical specimens and screwed together through a lap joint. The assembly can be seen
in Figure 3.1.

Figure 3.1. The Brake-Reuss Beam Geometry

For the purpose of the calculations, no interface dynamics were considered. The model is
assumed linear and with a rigid connection between the two specimens. The model is created
using hex elements and has a total of close to 63,000 translational DOF. The rotational DOF
are statically reduced out of the model to reduce the overall size of the model.
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The comparison between the models will consist of the first fourteen elastic free-free
modes. This selection contains all modes up to 4400 Hz. The selection of the first fourteen
is decided based on determining the effect of this uncertainty in the low and mid-frequency
ranges. This range of frequencies contains bending, torsional, and axial mode shape defor-
mations. Another important aspect to consider is the interface DOF for the Craig-Bampton
representation. For this model, one end of a specimen was decided to be the interface DOF.
This was chosen for the relative small amount of node, 81 nodes on each end, and the sim-
plicity compared to considering the joint interface that is hard to determine and has a large
amount of nodes in that contact area. One important note is that the screws are not physi-
cally modeled in this analysis. Since this report considers the interface as rigid, the addition
of the screws are unnecessary.

This example can become a very useful example for both model reduction and mechanical
joint analysis. For model reduction, there is not a complicated geometry or materials to
consider; It is a simple metal beam. The mechanical joints are a very interesting aspect
to this example. Since the specimens are manufactured, each can contain slightly different
surface finishes at the lap joint which can lead to different dynamics experimentally.
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Chapter 4

Small Variability

The first simulation that is presented is for if some knowledge is known about the distri-
bution of the uncertain parameter. This is interpreted as a very small variability. The first
result is the parameter sweep. This gives an idea on how accurate the reduction method is
compared to the true solution. All modes were computed individually and the first and last
natural frequency are presented. The results are presented in Figures 4.1-4.2. These figures
show the first order approximation which is the least accurate.
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Figure 4.1. First Natural Frequency with Small Variability
Parameter Sweep

In Figures 4.1-4.2, the vertical black dotted lines correspond to the data points that the
reduction was produced at. The Taylor series, POD, and Craig-Bampton used the data from
all five data points. The Meta-Model used the middle and the outer points so that only three
points were used in the derivation. The Hyper-Dual method only used the nominal value
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Figure 4.2. Fourteenth Natural Frequency with Small
Variability Parameter Sweep

which is the middle vertical line. It can be seen that for the first natural frequency, all the
methods do very well for the most part but start to loose accuracy closer to the extremes of
the parameter sweep. The fourteenth natural frequency however shows more inaccuracy. The
first thing is that the Craig-Bampton model has a frequency offset from the truth data. This
is not unexpected since the Craig-Bampton is a physical based reduction method and the
higher frequency mode require more information, which is reduced out. This error however
can be acceptable. The second thing of notice is that the different methods start to vary
from the truth data at more points in the fourteenth natural frequency compared to the first
natural frequency.

One of the major motivations for this report is to compare both accuracy and time
requirements to use these PROMs. The first comparison is the required time to compute
these parameter sweep curves. This utilizes 201 model evaluations. The time required to
produce the parameter sweep curve is presented in Table 4.1. Each method uses less than 6
high-fidelity code evaluations while the truth data requires 201 high-fidelity code evaluations.

The order refers to the number of derivatives are used in the parameterization. The
Craig-Bampton representation takes the longest to compute by a factor of almost three to
the next highest value. This is a major drawback but it still contains a physical meaning.
The Meta-Model requires the least amount of time to compute the curve. This is due to the
polynomial that is more simple to evaluate than a Taylor series. The Meta-Model however
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Table 4.1. Computation Time to Generate Parameter
Sweep [s]

Order Taylor POD Hyper-Dual Meta-Model CB
1 28.78 6.61 16.20 0.21 88.14
2 29.86 6.65 17.48 0.19 85.01
3 30.75 6.64 18.90 0.18 86.07
4 32.08 6.55 N/A N/A 86.07

takes more time to compute the unknown coefficients than the Taylor series.

The next result to report is the root mean square (RMS) error of the parameter sweep.
Model reduction error can be quantitatively measured using this value. The model reduction
error measure takes the RMS of the difference between each model and the truth data at
each natural frequency across the different Young’s modulus values for each order. This
produces a singular value that can be used for comparison. The first and fourteenth natural
frequency are presented in Table 4.2-4.3 respectively.

Table 4.2. RMS Error for Fundamental Frequency [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.119 0.119 0.119 0.225 0.004
2 0.008 0.008 0.008 41.96 0.004
3 0.001 0.001 0.001 Large 0.004
4 0.000 0.000 N/A N/A 0.004

Table 4.3. RMS Error for Fourteenth Natural Frequency
[%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.119 0.119 0.119 0.045 1.556
2 0.008 0.008 0.008 8.422 1.556
3 0.001 0.001 0.001 Large 1.556
4 0.000 0.000 N/A N/A 1.556

The first trend to note is that the Taylor series, POD, and Hyper-Dual methods have
the same accuracy. The POD and Taylor are expected to have the same accuracy but the
Hyper-Dual gives the same accuracy because the points used for the finite difference are
very closely spaced which gives the same derivative as the Hyper-Dual. The Craig-Bampton
model is the only one that will have different accuracies for different natural frequencies since
it is physical based while the other methods are purely numerical based. It is also the only
model that is able to calculate additional natural frequencies, or another desired output,
without have to be completely reformulated.
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Another important trend is for the Meta-Model. The first order matches the value and
the first derivative at each of the data-points. This provides a very accurate representation
of the data. When the extra derivatives are also matched, the error increases over the
range. This is believed to occur due to added power on the polynomial curve. The value of
perturbation gets large quicker which allows for larger error to occur. This can easily be seen
in Figure 4.3 near the extremes where the Meta-Model creates very large error. Figure 4.3
show the second order approximation for the fundamental frequency where all the models
are overlay-ed on each other besides the Meta-Model curve.

Young Modulus [GPa]
60 62 64 66 68 70 72 74 76 78 80

F
re

qu
en

cy
 [H

z]

230

235

240

245

250

255

260

265

270

Truth
Taylor Series
POD
Meta-Model
Hyper-Dual
Craig-Bampton

Figure 4.3. First Natural Frequency with Small Variability
Parameter Sweep using 2nd Order Approximations
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Chapter 5

Large Variability

The simulations the only contained small variations is unable to differentiate between
the Taylor series, POD, and Hyper-Dual methods based on accuracy. There was a difference
in computation time but the computations resulted in the exact same values. In order to
determine if there is a difference, the variation in the Young’s Modulus is increased.

Parameter Sweep

A parameter sweep is the first simulation of this larger variability. The main difference
is the range of the sweep; The previous sweep ran between 60− 80 GPa, while this sweep is
between 50−300 GPa. Each model is reconstructed at different nominal values. The results
of the sweep is shown in Figures 5.1-5.2.

It is easy to see that the accuracy has decreased due to the large variability. The first nat-
ural frequency doesn’t show much decrease in accuracy, which shows the first order analysis.
These are linear with the change in the Young’s modulus due to the Taylor series. There
are only two non-linear method, at this order, the Craig-Bampton and Meta-Model which
follow the truth data almost perfectly. The fourteenth natural frequency shows the most
differences between the methods that can accurately predict the first natural frequency.

The accuracy of the models is very dependent on the output relationship to the input
parameters. The more linear the relationship, the more accurate the reduction is. The
Young’s modulus is fairly linear with respect to the natural frequencies. Other types of
variability, such as Poisson ratio or a geometric length, decreases the accuracy of these models
reduction techniques. These other possible uncertainties are currently being researched. The
first quantitative measurable difference between the methods is the computational time to
compute the parameter sweep curves. These computation times are shown in Table 5.1 that
show the same trends as in Table 4.1. The Meta-Model is the fastest by a large amount and
the Craig-Bampton model takes the most time.

The next measure is the RMS error. This measure is the same as in Chapter 4. The
results are presented in Tables 5.2-5.3. One important trend is that the Taylor series and
POD gives the exactly same solution. This is a good comparison because the time required
to evaluate the POD model is significantly less than Taylor but gives the same accuracy
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Figure 5.1. First Natural Frequency with Large Variability
Parameter Sweep
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Figure 5.2. Fourteenth Natural Frequency with Large
Variability Parameter Sweep
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Table 5.1. Computation Time to Generate Parameter
Sweep [s]

Order Taylor POD Hyper-Dual Meta-Model CB
1 33.75 8.00 20.56 0.24 107.75
2 35.11 8.36 21.40 0.23 107.84
3 35.41 8.16 22.75 0.23 109.87
4 37.04 8.06 N/A N/A 109.87

measurement. Another important trend is the comparison between the Taylor series and the
Hyper-Dual representation. The Hyper-Dual only takes data from a single data-point and it
provides a more accurate solution than the Taylor series method which uses five data-points.
This shows the advantage of using the Hyper-Dual method.

Table 5.2. RMS Error for Fundamental Frequency [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 4.311 4.311 4.304 0.127 0.004
2 1.519 1.519 1.488 0.052 0.004
3 0.808 0.808 0.671 0.269 0.004
4 0.221 0.221 N/A N/A 0.004

Table 5.3. RMS Error for Fourteenth Natural Frequency
[%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 4.311 4.311 4.304 0.127 1.556
2 1.519 1.519 1.488 0.053 1.556
3 0.808 0.808 0.671 0.270 1.556
4 0.221 0.221 N/A N/A 1.556

Another interesting trend is between the Meta-Model and Hyper-Dual methods. The
Meta-Model provides better accuracy than the Hyper-Dual method at about 1% of the
computational time. The determination of the model takes more time but can overall be a
cost savings. The last trend of interest is the Craig-Bampton model. This model produced
the same accuracy for both the scenarios. The results for the Craig-Bampton model in Table
4.3 and Table 5.3 are the same values.
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Distribution Comparison

The accuracy of the reduction models are not purely based on a point-by-point compar-
ison from a parameter sweep. The accuracy is also dependent on how the model correctly
generates the output distribution. This is the ultimate information that is desired when using
a ROM. This allows for statistical correlations and reliability calculations to be performed.
In order to generate this distribution, a Monte-Carlo (MC) sampling analysis is performed.
This is a traditional MC analysis which takes random values from the input parameter and
propagates it into the final distribution. The first important determination is the distribu-
tion of the input parameter. For some parameters, this is a simple determination based on
large amount of data while some others are slightly more up to interpretation. One major
consideration is the bounds of the distribution must remain physical. For example, the mass
density must be positive. For the Young’s modulus, a log-normal distribution was selected
as the distribution. This was chosen based on the bounds. The log-normal distribution has
a support of (0,∞). This distribution never reaches zero but is always positive. It is chosen
that this distribution has a mean of 150 GPa and a coefficient of variation of 14%. This
was chosen to fully test the range of the parameter sweep. The input probability density
distribution can be seen in Figure 5.3 with 100, 000 samples.
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Figure 5.3. Histogram of 100,000 Samples of Young’s Mod-
ulus in Monte-Carlo analysis

The next major consideration is how to compare the distributions. There are several ways
to compare distributions: visually, box-plot, statistical moments, etc. Statistical moments
were chosen to be the comparative value, in particular, the first four statistical moments
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and the lower fractile were chosen. The probability distributions are also presented visually
to compare qualitatively. This comparison between statistical moments requires some truth
data to be compared to. The output distribution is not analytically known so an approxima-
tion must be used. In order to approximate the real solution, the data from the parameter
sweep is utilized. For each value of the Young’s modulus, the tabular data of the high-fidelity
model is used as the truth data. If the value is between two data-points in the tabular data,
a linear interpolation is used to determine the true value.

The first result is a qualitative analysis of the distribution. Figure 5.4 show the distribu-
tions for each type of model reduction and the truth data. The truth data in Fig. 5.4 is hard
to see but it is overlay-ed with the Meta-Model. By a visual examination, the distributions
look very similar. The first trend is that the Craig-Bampton method is shifted to the right
of the other curves. The rest of the curves are very close to the truth data. A point-by-point
difference of the distribution is shown in Figure 5.5. One of the main things to see in Figure
5.5 is that the Meta-Model has very little difference in probabilities. The other trend to note
is that the Taylor series, POD, and Hyper-Dual methods are close to the same amount of
error as seen by the overlay of the lines.
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Figure 5.4. Output Distributions for Each Method

The qualitative analysis does not show many differences between the distributions besides
the Craig-Bampton and Meta-Model. A quantitative analysis is required. The first analysis
is the time requirement to compute the distribution. These time trend follow the same as
the parameter sweep time trends. For 100, 000 samples, the Meta-Model takes 5 seconds and
the Craig-Bampton takes 9 minutes on 128 cores with the help of parallel processing. The
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Figure 5.5. Difference in Output Distributions for Each
Method

actual values are repetitive and are not reported.

The next quantitative analysis is the difference of the statistical moments. For this
analysis the first four statistical moments are compared, which are related to the mean,
variance, skewness, and kurtosis. The error is taken as the percent difference from the truth
model. The error presented in Table 5.4 are root mean squared through all fourteen natural
frequencies and all four moments.

Table 5.4. RMS Error for the Statistical Moments for all
Natural Frequencies [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.685 0.685 0.690 0.009 1.909
2 0.032 0.032 0.030 0.000 1.933
3 0.021 0.021 0.014 0.000 1.944
4 0.001 0.001 NA NA 2.037

The results in Table 5.4 show that every method used has relatively small error. Craig-
Bampton representation had the largest error of 2% which is still relatively small. POD
and Taylor again result in the exact same results but the time difference between the two
methods are significant. The Hyper-Dual and Taylor series produce very similar results but
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the Hyper-Dual only required one high-fidelity code evaluations. The Meta-Model gives the
best results out of all the methods and gives the results in the least amount of time.

Distribution Determination using Reduced Sampling

The previous section utilized 100, 000 sample in a traditional MC analysis. That large of
a sample based is not usually available for more difficult or complex problems even with the
use of ROMs. Some ROMs can still take a large amount of time depending on what type of
ROM is used. Traditionally, a reduced sample size is required due to time and computation
restrictions. Two methods are examined to test the accuracy of each method compared to
the full MC analysis: SROM and Latin Hypercube. The SROM technique is presented in
[6, 7]. This method takes a subset of the large sampling that matches the statistical moments
by using different probability at each data-point. The Latin Hypercube sampling technique
is presented in [15]. Latin Hypercube sampling is essentially dividing the distribution into
equal probable sections then selects a random point in each section to use for the sampling.
For each sampling technique, two different number of reduction points are used: 50 and 100
data-points. This is a dramatic reduction from 100, 000 but shows the effectiveness of these
different sampling techniques.

Latin Hypercube Sampling

The Latin Hypercube sampling technique splits the input domains into equally probable
sections and uses a data-point from each section. Latin Hypercube is implemented in MatLab
for a normal distribution, but not a log-normal distribution. A custom function is created
to use this sampling technique for a log-normal distribution. Latin Hypercube sampling can
become more complicated to implement in multiple dimensions but this example problem
is only using a univariate distribution of the Young’s modulus. Using this method requires
more memory to store the data-points than was required with the traditional MC analysis,
which selects each point at random. This memory increase is typically acceptable since the
required number of data-points is small, less than 0.1% in this example.

The first case of this sampling technique is the results for 50 data-points. Qualitative
results are shown in Figures 5.6-5.7. This shows that the Meta-Model and the truth data
are almost identical. Figure 5.6 shows the distribution of the fourteenth natural frequency.
The point-by-point difference between the distributions is shown in Figure 5.7.

These distributions only compare the methods to each other and do not show to ability
to accurately predict the full MC analysis. The error of the moments are shown in Table
5.5. This shows the RMS error compared to the full MC analysis statistical moments. The
first interesting trend is that the Meta-Model gives very accurate results even in the first
order approximation. The second trend is how bad the Craig-Bampton is in a reduced
framework. This is partially due to the inaccuracy of the Craig-Bampton on an individual

31



Natural Frequency [Hz]
5000 5500 6000 6500 7000 7500 8000

H
is

to
gr

am
 P

ro
ba

bi
lit

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Truth
Taylor Series
POD
Meta-Model
Hyper-Dual
Craig-Bampton

Figure 5.6. Output Distributions for Each Method with
50 Samples LHS
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code evaluation. The inaccuracy is also noted in Figure 5.4 with the shift in the peak.

Table 5.5. RMS Error for the Statistical Moments for all
Natural Frequencies with 50 Samples LHS [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.601 0.601 0.605 0.061 20.334
2 0.095 0.095 0.094 0.069 1.774
3 0.051 0.051 0.057 0.069 25.688
4 0.068 0.068 NA NA 39.710

While the accuracy of using 50 samples are very decent, the increase in number of samples
can increase the accuracy. The accuracy of using 100 samples is also determined. These
distributions can be seen in Figures 5.8-5.9. They show the same trends as the 50 sample
results.

Natural Frequency [Hz]
5500 6000 6500 7000 7500

H
is

to
gr

am
 P

ro
ba

bi
lit

y

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Truth
Taylor Series
POD
Meta-Model
Hyper-Dual
Craig-Bampton

Figure 5.8. Output Distributions for Each Method with
100 Samples LHS

The more interesting aspect is the accuracy increase for 100 samples. These results are
presented in Table 5.6. The first comment is the error for almost all the methods decrease
at most orders. An exception is the Craig-Bampton method that had a decrease in error for
first order but an increase in error for the other orders. The next trend is that the double
in samples does not correspond to a halving of the error. The Taylor series, POD, and
Hyper-Dual methods only have a small change in the error.
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Table 5.6. RMS Error for the Statistical Moments for all
Natural Frequencies with 100 Samples LHS [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.599 0.599 0.603 0.052 14.772
2 0.086 0.086 0.085 0.060 5.879
3 0.045 0.045 0.050 0.060 28.814
4 0.059 0.059 NA NA 166.520
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SROM Sampling

The other technique of reducing the required sampling number is the SROM technique.
This method uses a subset of a large sample size and selects the optimal subset to match the
first six statistical moments of the large sample. One of the main keys to this method is the
use of non-equal probabilities to better represent the distribution curve. Another key is the
flexibility of the method since it is defined by minimizing an objective function that the user
defines based on the important information for the problem, such as statistical moments.
This technique is used on the log-normal distribution of the Young’s modulus to be used in
the propagation of uncertainty.

The first results are for 50 samples in the distribution. The distributions are shown
in Figures 5.10-5.11. These distributions follow the same trend as the Latin Hypercube
method, where the Meta-Model is almost perfect with the true value while the Taylor series,
POD, and Hyper-Dual methods all have close to the true value but noticeable error. The
Craig-Bampton method also has a very large error.
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Figure 5.10. Output Distributions for Each Method with
50 Samples SROM

The statistical moments of the distribution is presented in Table 5.7. For the Taylor series,
POD, and Hyper-Dual methods, the 50 samples techniques are close to the same for both
Latin Hypercube and SROM. For a first order approximation, the Latin Hypercube gives a
better representation, and for higher order approximation, the SROM gives less error. One
interesting trend is the Meta-Model which has consistency less error in the SROM technique
compared to the Latin Hypercube technique. The Craig-Bampton method has large error.
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Figure 5.11. Difference in Output Distributions for Each
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This error is expected to decrease with the addition of more fixed-interface modes.

Table 5.7. RMS Error for the Statistical Moments for all
Natural Frequencies with 50 Samples SROM [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.626 0.626 0.630 0.039 1.789
2 0.078 0.078 0.077 0.047 13.778
3 0.027 0.027 0.034 0.047 60.779
4 0.046 0.046 NA NA 18.679

The next result is to increase the number of samples to 100. The distributions are
presented in Figures 5.12-5.13. These figures show the same trend as the previous ones. The
only noticeable difference in these distribution from the others are around 7500 [Hz] where
the truth data is not overlay with another curve.

The comparison between these distributions and the true distribution is presented in
Table 5.8. One interesting trend compared to 50 samples is that the Taylor series, POD,
and Hyper-Dual actually had an increase in error for the first order approximation. The
higher order approximations were decreased for those three methods. Another trend that
is followed is that the Meta-Model increased in accuracy with the increase in samples. The
Craig-Bampton method effectively failed this simulation.
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Figure 5.12. Output Distributions for Each Method with
100 Samples SROM
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Table 5.8. RMS Error for the Statistical Moments for all
Natural Frequencies with 100 Samples SROM [%]

Order Taylor POD Hyper-Dual Meta-Model CB
1 0.649 0.649 0.653 0.022 319.05
2 0.062 0.062 0.060 0.030 429.42
3 0.010 0.010 0.017 0.030 56.560
4 0.029 0.029 NA NA 36.730

The next comparison is between Latin Hypercube and SROM with 100 samples each.
POD, Taylor series, and Hyper-Dual have relatively the same accuracy for the first order
approximation with slightly higher error for the SROM. The higher order approximations
were consistently more accurate for the SROM technique. Meta-Model method while using
the SROM technique has approximately half the error for all order of approximations. The
Craig-Bampton model was not very accurate for any of these simulations.

While the distributions are a good measure of accuracy, the upper fractile is a more useful
for reliability engineers. In this analysis, the upper fractile is defined as

x ∋ Pr(X ≤ x) = 0.1%, (5.1)

where x is the location of the upper fractile. The probability is calculated based on a
histogram of the sampled data. This value is presented in Table 5.9. The reduced sampling
techniques are not considered since there are only 50 samples used in the distribution, which
does not have enough resolution to measure 0.1% probability.

Table 5.9. Fundamental Frequency Value of the Upper
Fractile Location

Frequency [Hz]
True Data 295.24

Taylor Series 302.47
POD 302.47

Hyper-Dual 302.38
Meta-Model 295.29

Craig-Bampton 295.24

The data in Table 5.9 shows a very similar trend as the parameter sweep, where the
Meta-Model gives very high accuracy and the Taylor series proves a decent accuracy. The
trend also follows that the Craig-Bampton model is the most accurate for the fundamental
frequency. This accuracy decreases for higher frequencies but is still more accurate than
Taylor series, POD, and Hyper-Dual.
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Chapter 6

Conclusions

The methods discussed in this report are: Taylor series with finite difference, Proper
orthogonal decomposition, Craig-Bampton reduction, Hyper-Dual formulation, and a Meta-
Model method. Each method provided has specific advantages and disadvantages. The
Taylor series is straight forward but can be computationally expensive. POD reduces the
size of the Taylor series but requires singular value decomposition of the output data and still
uses a finite difference. Craig-Bampton representation is a physical reduction model but still
requires a full code evaluation on the reduced system. Hyper-Dual method provides the same
accuracy with only a single high-fidelity code evaluation but requires special programming
in order to extract the extra information. The Meta-Model method fits a polynomial curve
to the output of multiple Hyper-Dual calculations but the determination of the unknown
coefficients can become computationally infeasible.

The Craig-Bampton reduction provided the least accurate results and required the most
computation time to evaluate. This method, however, is the most feasible if the output is not
completely known. That is to say, if the analysis technique is not quite known or decided, the
Craig-Bampton reduction doesn’t perform any analysis, just reduces the size of the model. It
is able to evaluate new information without a complete redefinition although the errors might
become high. Craig-Bampton is also very accurate is predicting the upper fracture of the
distribution for all frequencies, although, it is most accurate at the low natural frequencies.
The rest of the models were based purely on a numerical approximation and contains no
physical information while the Craig-Bampton contains all the physical information. Each
model is able to accurately predict both the parametric sweep curve along with the output
distribution by using the statistical moments and the upper fractile as an error measurement.

The results in this report are for this one example system as an illustrative example. Each
system is different and the results will very, but the general trends will be followed. The
selection of the reduction model is dependent on the computational ability. If only a single
code evaluation is possible, the Hyper-Dual method provides very accurate results if the code
if able to evaluate Hyper-Dual numbers. If only a few evaluations are available and the code
is able to evaluate Hyper-Dual numbers, the Meta-Model method is very good since it can
provide accurate results and very low computational cost once the unknown coefficients are
determined. It is important to select points near the extremes of the input parameters to
not have numerical issues for large difference in values compared to the data-points used in
the derivation. If no high-fidelity code evaluations are possible, a Craig-Bampton reduction
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is very useful. This method does not require a full high-fidelity code evaluation and provides
a reasonable error measure. If many code evaluations are available, POD or Taylor series
can be used. Both of these require multiple high-fidelity code evaluations in order to provide
high accuracy results. The POD method is preferred if the output data is manageable in a
matrix since it requires less computational power to produce the distribution and uses less
memory for storage.

The determination of the output distribution using a large Monte-Carlo analysis can
become very computationally expensive. Two techniques for reducing the number of required
samples are evaluated and compared: Latin Hypercube sampling and SROM sampling. Both
techniques are able to represent the output distribution moments accurately while using a
very small fraction of the number of samples. As a general trend the SROM sampling
produced less error in the calculations compared to Latin Hypercube.
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